Convenient Peptide Synthesis without Protection of C-Terminals

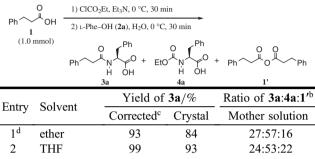
Takuya Noguchi, Naoka Tehara, Yuki Uesugi, Seunghee Jung, and Nobuyuki Imai* Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025

(Received October 4, 2011; CL-110815; E-mail: nimai@cis.ac.jp)

Condensation of carboxylic acids 1 and 5 with unprotected α -amino acids 2 via activation by ethyl chloroformate and triethylamine proceeded effectively to afford the corresponding amides in 50–99% yields. Tripeptide 7c was obtained in 42% yield from the dipeptide 6c in a similar manner.

A variety of peptide synthetic methods have been developed for important chemical and biomedical research.¹ For example, activation of carboxylic acids to reactive intermediates such as acyl halides, acyl azides, acyl imidazoles, esters, anhydrides, and mixed carbonic carboxylic anhydrides is necessary for nucleophilic attack by amines. Among them, mixed carbonic carboxylic anhydrides are particularly attractive intermediates because they are easily prepared from the corresponding carboxylic acid, are very stable, and react readily with nucleophiles.² The conventional procedure involves activation of the carbonyl group with alkyl chloroformate in the presence of a tertiary amine to form the corresponding mixed carbonic carboxylic anhydride and the reaction of this intermediate with the amine component.

$$\begin{array}{c} R_{1}^{1} \bigcirc \\ P^{1}HN \longrightarrow OH \xrightarrow{} P^{1}HN \xrightarrow{} P^{1}HN \xrightarrow{} X \xrightarrow{} H_{2}^{1} \bigcirc \\ R_{2}^{1} \longrightarrow OP^{2} \xrightarrow{} R_{1}^{1} \longrightarrow N \xrightarrow{} P^{2} \\ P^{1}HN \xrightarrow{} HN \xrightarrow{} P^{2} \xrightarrow{} (1) \end{array}$$


Herein, we describe condensation of carboxylic acids with unprotected α -amino acids in the presence of ethyl chloroformate and triethylamine.

$$\begin{array}{c} R_{1}^{1} & O \\ P-HN & OH \end{array} \xrightarrow{\text{CICO}_{2}\text{Et}} \\ P-HN & OH \end{array} \xrightarrow{\text{R}_{1}} \left[\begin{array}{c} O \\ R_{1}^{1} & O \\ P-HN \end{array} \right] \xrightarrow{\text{R}_{2}} O \\ P-HN \end{array} \xrightarrow{\text{R}_{1}} \left[\begin{array}{c} O \\ R_{2}^{1} & O \\ P-HN \end{array} \right] \xrightarrow{\text{R}_{2}} O \\ \overrightarrow{\text{THF-H}_{2}O} \xrightarrow{\text{R}_{1}} P-HN \xrightarrow{\text{R}_{2}} O \\ P-HN & OH \end{array} \xrightarrow{\text{R}_{2}} O \\ (2) \end{array}$$

In a preliminary investigation, the reaction of 3-phenylpropanoic acid (1) with 1.5 equivalents of L-phenylalanine (2a) in the presence of 1.4 equivalents of ethyl chloroformate and 3.0 equivalents of triethylamine in tetrahydrofuran (THF)-H₂O afforded the corresponding amide 3a in 99% yield as indicated in Entry 2 of Table 1. The solvent effect of the reaction was examined and the results are displayed in Table 1. In the case of using dimethyl sulfoxide (DMSO) as a solvent, poor yield was observed (10% in Entry 4). N,N-Dimethylformamide (DMF) works as a solvent in the reaction to afford a moderate yield (63% in Entry 5). Amidation of 1 with 2a proceeded in ether, THF, 1,4-dioxane, acetone, and acetonitrile to give 3a in excellent yields (93-99%) within a short reaction time except for ether. A small amount of by-products 4a and 1' was detected with ¹HNMR analysis of the concentrates of the mother solutions in Entries 1-3, 6, and 7 of Table 1.

Next, the effect of the quantity of ethyl chloroformate on the amidation was examined and the results are summarized in Table 2. The carboxylic acid 1 was efficiently coupled with 2a to afford 3a in 90–99% yields, and a small amount of by-products 4a and 1' was detected with ¹H NMR analysis of the

Table 1. Solvent effect on the amidation of 3-phenylpropanoic acid (1) with L-phenylalanine (2a) in the presence of ethyl chloroformate^a

3	1,4-dioxane	95	92	14:63:23
4 ^e	DMSO	10	10	0:0:100
5 ^e	DMF	63	61	9:5:86
6	acetone	95	93	18:54:29
7	acetonitrile	93	90	28:41:31
^a All reactions were carried out with 1.0 mmol of 1, 1.4 mmol of				

"All reactions were carried out with 1.0 mmol of 1, 1.4 mmol of ethyl chloroformate, and 3.0 mmol of triethylamine in 20 mL of the solvent. After stirring for 30 min at 0 °C, 1.5 mmol of Lphenylalanine (2a) in 20 mL of H₂O was added at 0 °C to the reaction mixtures. ^bDetermined by ¹H NMR analysis of the concentrates of the mother solutions. ^cCrystal + 3a of the mother solution (3a + 4a + 1'). ^dThe reaction time was 3 h. ^eThe reaction was carried out at room temperature.

Table 2. Effect of the quantity of ethyl chloroformate on the amidation of 3-phenylpropanoic acid (1) with L-phenylalanine $(2a)^a$

	0 1) C	ICO ₂ Et, Et ₃ N, THF,		
Ph 🔨	OH 2) L-			
(1.0	P mmol)		$ \begin{array}{c} 0 \\ $	Ph~~ ^L O ^L ~Ph
Entry	ClCO ₂ Et	Yield of	3a/%	Ratio of 3a:4a:1 ^{/b}
Liiuy	/equiv	Corrected ^c	Crystal	Mother solution
1	1.1	90	86	21:44:35

1	1.1	90	86	21:44:35
2	1.4	99	93	24:53:22
3	2.0	93	90	8:42:50
4 ^d	1.4	96	92	21:59:21
5 ^e	1.4	91	86	20:54:25

^aAll reactions were carried out with 1.0 mmol of **1**, ethyl chloroformate, and 3.0 mmol of triethylamine in 20 mL of THF. After stirring for 30 min at 0 °C, 1.5 mmol of L-phenylalanine (**2a**) in 20 mL of H₂O was added at 0 °C to the reaction mixtures. ^bDetermined by ¹H NMR analysis of the crude concentrates of the mother solutions. ^cCrystal + **3a** of the mother solution (**3a** + **4a** + **1'**). ^dThe reaction was carried out from 0 °C to room temperature in both steps. ^cThe reaction was carried out from 0 °C to room temperature in the second step.

Table 3. Amidation of 3-phenylpropanoic acid (1) with α -amino acids **2a–2f** without protection of *C*-terminals^a

Ph (1.0 mmol) H_2N H_2N H_2N H_2N O H_2N O O C , 30 min						
$Ph \xrightarrow{2} N \xrightarrow{R} O O O O O O O O O O O O O O O O O O O$						
Entry	R	2	Yield of	3/%	Ratio of 3:4:1'b	
Entry			Corrected ^c	Crystal	Mother solution	
1	PhCH ₂	2a	99	93	24:53:22	
2	Ph	2b	91	84	32:42:26	
3	Me ₂ CH	2c	91	89	8:69:23	
4	Me ₃ C	2d	90	86	14:73:13	
5	HO ₂ CCH ₂ CH ₂	2e	50	45	13:24:64	
6	H ₂ NCOCH ₂ CH ₂	2f	73	73	0:0:100	

^aAll reactions were carried out with 1.0 mmol of **1**, 1.4 mmol of ethyl chloroformate, and 3.0 mmol of triethylamine in 20 mL of THF. After stirring for 30 min at 0 °C, 1.5 mmol of α -amino acid **2** in 20 mL of H₂O was added at 0 °C to the reaction mixtures. ^bDetermined by ¹H NMR analysis of the concentrates of the mother solutions in all cases. ^cCrystal + **3** of the mother solution (**3** + **4** + **1**').

concentrates of the mother solutions in all entries of Table 2. The optimized conditions for preparing **3a** were treatment of **1** with 1.4 equivalents of ethyl chloroformate and 3.0 equivalents of triethylamine in THF at 0 °C, followed by addition of 1.5 equivalents of **2a** in H₂O at 0 °C (Entry 2). Then, Table 3 shows the results of the reactions of 3-phenylpropanoic acid (1) with several kinds of α -amino acids **2a–2f**. The reactions with α -amino acids **2a–2d** afforded the corresponding amides **3a–3d** in 90–99% yields (Entries 1–4). Although the reaction of **1** with L-Glu–OH (**2e**) afforded **3e** in 50% yield along with the by-product **1'** of 48% yield based on **1** (Entry 5), the reaction with L-Gln–OH (**2f**), the amide form of **2e**, gave a better yield (73% in Entry 6).

Finally, condensations of N-protected L-phenylalanine 5a–5c with several kinds of unprotected α -amino acids 2a and 2c-2g via mixed carbonic carboxylic anhydrides are shown in Table 4. We selected tert-butyl carbamate (Boc), 9-fluorenylmethyl carbamate (Fmoc), and benzyl carbamate (Cbz) as a protecting group. L-Val-OH protected by the Cbz group worked efficiently to afford the corresponding dipeptide 6c in 95% yield in comparison with those protected by the Boc and Fmoc groups as shown in Entries 1–3. A bulky α -amino acid 2d and L-Gln– OH (2f) containing amide moiety gave 83% and 93% yields in Entries 4 and 6, respectively, although L-Glu-OH (2e) was converted to the dipeptide 6e in 51% yield as indicated in Entry 5. L- and D-Phe-OH were transformed into the corresponding single diastereomer in 88% yields in Entries 7 and 8, respectively.3 These results indicate that racemization does not proceed under the reaction conditions. Furthermore, the amidation of Cbz-L-Phe-L-Val-OH (6c) with L-Ala-OH was carried out to afford the corresponding tripeptide 7c in 42% yield.

In conclusion, we have developed a convenient peptide synthesis without protection of *C*-terminals in α -amino acids **2a** and **2c-2g** to afford the corresponding dipeptide **6a-6h** in 51–

Table 4. Synthesis of dipeptides 6 without protection of *C*-terminals in α -amino acids^a

$\begin{array}{c} Ph \longrightarrow O \\ P-HN \longrightarrow OH \end{array} \xrightarrow{(1) \text{ CICO}_2\text{Et, Et}_3\text{N, THF, 0 °C, 30 min}}_{2) P \longrightarrow OH} \xrightarrow{(2) P \longrightarrow O \\ H_2N \longrightarrow OH \end{array} \xrightarrow{(1) \text{ CICO}_2\text{Et, Et}_3\text{N, THF, 0 °C, 30 min}}_{2} \xrightarrow{(1) \text{ CICO}_2\text{Et, Et}_3\text{N, THF, 0 °C, 30 min}} \xrightarrow{(1) \text{ CICO}_2\text{Et, Et}_3\text{N, THF, 0 °C, 30 min}} \xrightarrow{(1) \text{ CICO}_2\text{Et, Et}_3\text{N, THF, 0 °C, 30 min}} \xrightarrow{(1) \text{ CICO}_2\text{Et, Et}_3\text{N, THF, 0 °C, 30 min}} \xrightarrow{(1) \text{ CICO}_2\text{Et, Et}_3\text{N, THF, 0 °C, 30 min}} \xrightarrow{(1) \text{ CICO}_2\text{Et, Et}_3\text{N, THF, 0 °C, 30 min}} \xrightarrow{(1) \text{ CICO}_2\text{Et}_3\text{N, CICO}_3\text{N, CICO}_3\text$							
Entry	Р	5	R	2	Dipeptide 6	Yield ^b /%	
1	Boc	5a	Me ₂ CH	2c	6a	77	
2	Fmoc	5b	Me ₂ CH	2c	6b	83	
3	Cbz	5c	Me ₂ CH	2c	6c	95	
4	Cbz	5c	Me ₃ C	2d	6d	83	
5	Cbz	5c	HO ₂ CCH ₂ CH ₂	2e	6e	51	
6	Cbz	5c	H ₂ NCOCH ₂ CH ₂	2f	6f	93	
7	Cbz	5c	PhCH ₂ (L)	2a	6g	88	
8	Cbz	5c	$PhCH_2$ (D)	2g	6h	88	

^aAll reactions were carried out with 1.0 mmol of N-protected L-phenylalanine **5**, 1.4 mmol of ethyl chloroformate, and 3.0 mmol of triethylamine in 20 mL of THF. After stirring for 30 min at 0 °C, 1.5 mmol of α -amino acid **2** in 20 mL of H₂O was added at 0 °C to the reaction mixtures. ^bIsolated yields.

95% yields. No racemization was observed in our method. We still examine further investigations about this type of condensation for preparation of polypeptides.

References and Notes

- For selected reviews on peptide syntheses: a) M. A. Blaskovich, Handbook on Syntheses of Amino Acids: General Routes for the Syntheses of Amino Acids, Oxford University Press, New York, **2010**. b) C. A. G. N. Montalbetti, V. Falque, Tetrahedron 2005, 61, 10827. c) T. Wieland, M. Bodanszky, The World of Peptides: A Brief History of Peptide Chemistry, Springer-Verlag, New York, **1991**, pp. 77–102. For selected reports for peptide syntheses using unprotected α-amino acids: d) P. Gagnon, X. Huang, E. Therrien, J. W. Keillor, Tetrahedron Lett. **2002**, 43, 7717, and the references cited therein. e) M. V. Anuradha, B. Ravindranath, Tetrahedron **1997**, 53, 1123. f) G. W. Anderson, J. E. Zimmerman, F. M. Callahan, J. Am. Chem. Soc. **1964**, 86, 1839.
- 2 a) W. Chu, Z. Tu, E. McElveen, J. Xu, M. Taylor, R. R. Luedtke, R. H. Mach, *Bioorg. Med. Chem.* 2005, 13, 77. b) A. Chaudhary, M. Girgis, M. Prashad, B. Hu, D. Har, O. Repič, T. J. Blacklock, *Tetrahedron Lett.* 2003, 44, 5543. c) W.-C. Shieh, J. A. Carlson, M. E. Shore, *Tetrahedron Lett.* 1999, 40, 7167. d) R. M. Wenger, *Helv. Chim. Acta* 1983, 66, 2672. e) J. Meienhofer, in *Major Methods of Peptide Bond Formation* in *The Peptides: Analysis, Synthesis, Biology*, ed. by E. Gross, J. Meienhofer, Academic Press, New York, 1979, Vol. 1, pp. 263–314.
- 3 A typical procedure of the amidation of 5c using ethyl chloroformate is as follows. To a solution of 299 mg (1.0 mmol) of Cbz-L-Phe-OH (5c) in 20 mL of THF, 134 µL (1.4 mmol, 1.4 equivalents) of ethyl chloroformate and 415 µL (3.0 mmol, 3.0 equivalents) of triethylamine were added at 0 °C. After stirring for 30 min at 0 °C, a solution of 248 mg (1.50 mmol, 1.5 equivalents) of L-phenylalanine (2a) in 20 mL of H₂O was added at 0 °C to the colorless suspension. The mixture was stirred for 30 min at 0 °C, and the colorless clear solution was concentrated in vacuo. To the residue was added a 1.0 M solution of hydrogen chloride to adjust to pH 2. The resulting suspension was extracted with 100 mL of ethyl acetate, washed with 10 mL of brine, and dried over anhydrous magnesium sulfate. The crude product was recrystallized from 40 mL of an 1:3 mixture of chloroform and hexane to afford 391 mg (88% yield) of 6g (Cbz-L-Phe-L-Phe-OH). 6g: colorless powder; ¹HNMR (CDCl₃): δ 2.98 $(1H, dd, J = 6.4, 14.0 Hz, CH_A), 3.02 (2H, d, J = 6.6 Hz, CH_2), 3.14$ $(1H, dd, J = 6.0, 14.0 Hz, CH_B), 4.38-4.46 (1H, m, CH), 4.74-4.79$ (1H, m, CH), 5.06 (2H, s, CH₂), 5.30 (1H, d, J = 7.1 Hz, NH), 6.34 (1H, d, J = 7.3 Hz, NH), 7.02–7.34 (15H, m, C₆H₅ × 3).